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ABSTRACT
Topic modeling, in particular the Latent Dirichlet Allocation
(LDA) model, has recently emerged as an important tool for
understanding large datasets, in particular, user-generated
datasets in social studies of the Web. In this work, we in-
vestigate the instability of LDA inference, propose a new
metric of similarity between topics and a criterion of vo-
cabulary reduction. We show the limitations of the LDA
approach for the purposes of qualitative analysis in social
science and sketch some ways for improvement.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics – Probabilistic algorithms (including Monte Carlo); G.1.0
[Mathematics of Computing]: Numerical Analysis – sta-
bility (and instability); I.1.2 [Computing Methodologies]:
Algorithms – analysis of algorithms; I.2.7 [Artificial Intel-
ligence]: Natural Language Processing – text analysis
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1. INTRODUCTION
With huge growth of online text data, it is becoming vi-

tally important for social scientists to have reliable methods
for fast automated analysis of such data. Researchers are, in
particular, interested in methods able to track agendas, top-
ics, opinions, and sentiments in user-generated content that
can later be used for the purposes of political science, soci-
ology, marketing, and other disciplines. One of the methods
aimed at detecting topical structure in large text collections
is a class of probabilistic models called Latent Dirichlet Allo-
cation (LDA); these models have become the de facto stan-
dard in the field of topic modeling. However, comprehensive
investigations of the quality of these models for qualitative
studies are very scarce, and some indicators of quality, such
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as reproducibility of results, have hardly been researched at
all. Instead, complex extensions of the algorithm are rapidly
proliferating [2,4,9,18], as well as applications of topic mod-
eling to specific datasets and applied goals, e.g., qualitative
studies, without comprehensive prior testing [7].

Informally speaking, quality for social scientists means
that the algorithm is able to show the topics “that are re-
ally there”. In particular, a social scientist would expect
that a topic modeling algorithm detects all “existing” top-
ics, does not show any “non-existing” topics, and shows their
“true” proportion. Then the researcher would conclude, say,
whether the online public is currently talking more about
elections than about popstars (in sociological context), or
more about one brand than another (in marketing context).
While it is unclear how to judge this notion of quality, sta-
bility is obviously an important sanity check: if a model
gives different results each time it is run on the same data,
it certainly does not draw the “true” picture of social reality.

In LDA, each document expresses multiple topics at once,
each with a certain affinity. Likewise, each topic is a dis-
tribution on words. Thus, from the mathematical point of
view each document is a mixture of distributions. To find
the word-topic and topic-document matrices (probabilities
of words appearing in topics and topics appearing in docu-
ments), one has to approximate the initial set of documents
by these distributions. Two most popular approaches are
based on variational approximations [1, 3] and Gibbs sam-
pling [5] respectively. These algorithms find a local max-
imum of the joint likelihood function of the dataset; this
is accepted as a solution for the topic modeling problem.
Moreover, the LDA approach has been further developed by
offering more complex model extensions with additional pa-
rameters and additional information [2, 4, 9, 18]. However,
from the end user’s point of view a local maximum does
not necessarily represent a satisfactory solution for the topic
modeling problem. In the case of LDA, there are plenty of
local maxima [5], which may lead to instability in the out-
put. Therefore, before using LDA social scientists have to
understand how stable the output will be; this, in turn, calls
for an instrument of comparison between different solutions
that would be able to capture similarity between topics as
sets of words with probabilities. One important problem is
the huge “long tail” of words with low probabilities that are
mostly irrelevant for qualitative analysis but may contribute
to the level of similarity between topics. Therefore, we may
need additional criteria for reducing these sets of words.
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Figure 1: LDA graphical model.

In this work, we investigate the instability of the LDA al-
gorithm, proposing a new metric of similarity between topics
and a method for vocabulary reduction. We show the limita-
tions of LDA for the purposes of qualitative analysis in social
sciences and sketch some ways to improvement. Section 2
shows related work and our contributions. In Section 3, we
introduce the new similarity metric, in Section 4 we use it to
evaluate LDA stability, and Section 5 concludes the paper.

2. LDA AND OUR CONTRIBUTIONS

2.1 LDA
The basic latent Dirichlet allocation (LDA) model [3,5] is

depicted on Fig. 1. In this model, a collection of D docu-
ments is assumed to contain T topics expressed with W dif-
ferent words. Each document d ∈ D is modeled as a discrete
distribution θ(d) over the set of topics: p(zw = j) = θ

(d)
j ,

where z is a discrete variable that defines the topic for each
word w ∈ d. Each topic, in turn, corresponds to a multino-

mial distribution over the words, p(w | zw = j) = φ
(j)
w . The

model also introduces Dirichlet priors α for the distribution
over documents (topic vectors) θ ∼ Dir(α), and β for topical
word distributions, φ ∼ Dir(β). The inference problem in
LDA is to find hidden topic variables z, a vector spanning
all instances of all words in the dataset. There are two ap-
proaches to LDA inference: variational approximations and
MCMC sampling which in this case is convenient to frame
as Gibbs sampling. After easy transformations [5], Gibbs
sampling reduces to the so-called collapsed Gibbs sampling,
where zw are iteratively resampled with distributions

p(zw = t | z−w,w, α, β) ∝ p(zw, t, z−w,w, α, β) =

=
n
(d)
−w,t + α∑

t′∈T

(
n
(d)

−w,t′ + α
) n

(w)
−w,t + β∑

w′∈W

(
n
(w′)
−w,t + β

) ,
where n

(d)
−w,t is the number of times topic t occurs in docu-

ment d and n
(w)
−w,t is the number of times word w is generated

by topic t, not counting the current value zw.

2.2 Evaluating LDA quality with perplexity
One well established method for numerical evaluation of

topic modeling results is to measure perplexity. Perplex-
ity shows how well the model predicts new test samples;
for a set of held-out documents Dtest one computes p(d |
D) =

∫
p(d | φ, θ)p(φ, θ | D)dθdφ for each held-out docu-

ment d and then normalizes the result as perplexity(Dtest) =

exp
(
−

∑
d∈Dtest

log p(d)∑
d∈Dtest

Nd

)
. To compute p(d | D), various algo-

rithms have been proposed, the current standard being the
so-called left-to-right algorithm [16,17].

The smaller the perplexity, the better (less uniform) is
the LDA model and the more it differs from the starting
distribution. However, an important drawback of evaluat-
ing the quality of a parametric LDA model with perplexity
is the fact that the value of perplexity drops as the number
of topics grows, so perplexity does not really yield a way
to find the optimal number of topics either numerically or
qualitatively. In general, topic modeling can be thought of
as clustering, and it inherits certain problems of clustering,
including the problem of finding the optimal number of clus-
ters (model selection). Moreover, perplexity depends on the
dictionary size which further complicates the comparison of
different results. De Waal and Barnard [15] studied per-
plexity as a function of dictionary size (for a fixed number
of topics and documents) and showed that when the dictio-
nary was reduced by 70%, perplexity dropped by a factor of
three. Unfortunately, the authors do not analyze how these
changes affect the final result of topic modeling, i.e., how
well the topics represent the actual contents of the dataset.

In general, perplexity is a good measure to estimate con-
vergence of the iterative process but it is unclear how to use
it to evaluate the quality of topic modeling, especially from
the point of view of human interpretation.

2.3 Evaluating LDA quality with Kullback–
Leibler divergence and topic correlation

Steyvers and Griffiths [6] propose to evaluate LDA qual-
ity with a symmetric Kullback–Leibler divergence. This ap-
proach is based on pairwise comparisons of two solutions
to the topic modeling problem. The pairwise comparison is
computed as

KL =
1

2

∑
w

φ1
w log

φ1
w

φ2
w

+
1

2

∑
w

φ2
w log

φ2
w

φ1
w

,

where φ1
w is the word distribution for the first topic; φ2

w, for
the second topic. This metric shows similarity between two
topics, but further analysis that would analyze the stability
of topic reproduction in multiple topic modeling experiments
on the same dataset has not been performed. Besides, the
Kullback–Leibler divergence only gives an estimate of the
similarity of two topics while detailed analysis would have
to take into account some evaluation of the dissimilarity
between two topics.

A different approach to pairwise comparisons between top-
ics was proposed by de Waal and Barnard [15]. Instead of
Kullback–Leibler divergence, they propose a method to com-
pute correlation between documents from two topic model-
ing experiments. The method consists of the following steps:
(1) construct a bipartite graph based on two topical solu-
tions; (2) compute the minimal distance between topics in
this bipartite graph; (3) compare topics between two clus-
ter solutions based on the minimal distance. This means
that two topics are similar if they have the smallest distance
between them as compared to the distance from these two
topics to other topics. To compute minimal distances in
the bipartite graph, the authors use the so-called Hungar-
ian method, also known as Kuhn’s method [8]. The authors
show that correlation between documents does not depend
on dictionary size as much as perplexity.

2.4 Our contributions
In this work, we propose several new metrics for evaluating

different aspects of topic modeling. Namely, we introduce
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the notions of document and word ratios that show the frac-
tion of words and documents that are actually relevant to
specific topics. This lets us drastically cut the vocabulary in
our novel topic similarity metric based on Kullback–Leibler
divergence; we show that this metric matches qualitative ex-
pectations of the notion of similar topics quite well. Armed
with this metric, we study the stability of Gibbs sampling
for LDA inference and discover that modeling results are
unstable, and sociological analysis based on topic modeling
should proceed with extra care. We conclude with recom-
mendations for further studies.

In numerical experiments, we used a popular LDA infer-
ence implementation based on Gibbs sampling, GibbsLDA++
[10]. The dataset for experiments consists of Russian lan-
guage LiveJournal posts for October 2013 that we have col-
lected for the purposes of qualitative sociological and me-
dia studies. There are 298,967 posts in the dataset with
35,049,514 instances of 153,536 unique words.

3. EVALUATING SPARSITY

3.1 Word and document ratios
LDA inference algorithms based on Gibbs sampling rely

upon random sampling used to generate topic variables z
for document instances on each iteration. Thus, topic mod-
eling by itself is influenced by random noise: topic variables
for both documents and topics fluctuate randomly during
modeling. However, the LDA inference algorithm guaran-
tees that the iterative process converges to a certain value
of perplexity with some noise, which means that the number
of words and documents used in modeling also converge to
a certain value.

To estimate the number of high probability words and
documents, we introduce the notion of ratio. Ratio is closely
related to the notion of perplexity. The initial distribution
for words and documents is uniform, so the probability of
each topic in each document starts from 1/K, where K is the
number of topics, and the probability of each word in each
topic starts from 1/V , where V is the dictionary size. During
inference, probabilities of words and topics in documents
change, but they still, obviously, sum up to one; some words
and topics rise above the average values of 1/K and 1/V ,
and the others sink below it.

We introduce document ratio as the parameter that char-
acterizes the ratio of the total number of topics with prob-
ability greater than 1/K over all documents:

DR =
1

K|D|
∑
d∈D

∑
k

[
θ
(d)
k >

1

2

]
.

At the beginning of the first iteration, DR = 1; over Gibbs
sampling iterations, DR begins to drop and then, at some
point, it stabilizes and converges to some value; we can stop
the Gibbs sampling as fluctuations of DR attenuate. Sim-
ilarly, we formulate the notion of words ratio which is the
ratio of the number of words in all topics with probability
higher than 1/V to the total number of words in all topics:

WR =
1

KW

∑
w

∑
k

[
φk
w >

1

2

]
.

Note that the same document (resp., word) may participate
in the computation of document ratio (resp., word ratio)
several times.
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Figure 2: Sample document ratio (dashed line, %)
and word ratio (solid line, %) as a function of itera-
tion index.

Figure 2 shows the behaviour of word and document ra-
tios for a sample run of LDA inference with 120 topics. In
this case, the word ratio stabilized after 150–200 iterations
around 3.2%; document ratio, around 11.5%. One can also
introduce the average word ratio over a set of samples as
AWR = 1

n

∑n
i=1 WRi, where WRi is the word ratio mea-

sured at the ith sample; similarly. the average document
ratio is introduced as ADR = 1

n

∑n
i=1 DRi. Our experi-

ments with different number of topics (from 50 to 280) have
shown that the word ratio stabilizes around 3.5% and docu-
ment ratio stabilizes around 11.5% in all experiments, with
standard deviation of the results being about 0.5-1%.

3.2 KL-based similarity metric
The Kullback–Leibler divergence is a widely accepted dis-

tance measure between two probability distributions. How-
ever, directly computing KL divergence to measure similar-
ity between two topics in a topic modeling result does not
lead to a good result since the KL value is dominated by the
long tail of low probability words that do not define the topic
in any qualitative way and are mostly random. Therefore,
in this section we devise a modification for the KL metric to
measure similarity between topics.

As we have shown above, the number of words with above
average probabilities in our experiments was about 3.5% of
the total number of unique words in all topics. We left
only words top probabilities in at least one topic reducing
the dictionary from 153,536 tokens (words) to 8000 (about
5.2%). This also lets us compute KL divergence faster since
it has complexity O(K2W ), where K is the number of topics
and W is the dictionary size.

Another deficiency of the “vanilla” Kullback–Leibler di-
vergence is that it significantly depends on the dictionary
size [15]. This means that while the KL divergence is always
zero (or very close to zero) when two distributions coincide
almost exactly, it may have values all over the [0, 1] for two
very distinct topics if we consider different dictionaries and
different pairs of topics, so it is hard to find a good general
threshold for KL divergence. To get such a threshold, we
propose to normalize KL divergence by making the distance
between two least similar topics artificially equal to 1. Thus,
we introduce the normalized KL similarity measure as

NKLS(t1, t2) =

(
1− KL(t1, t2)

maxt′1,t
′
2

KL(t′1, t
′
2)

)
,
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where KL denotes the regular KL divergence. In the NLKS
measure, 1 corresponds to a perfect match and 0 corresponds
to the furthest possible distributions among given sets of
topics.

3.3 Topic similarity thresholds
Kullback–Leibler divergence takes into account the long

tail of topic-word distributions, and it may happen (and
often does) that large deviations in KL-based metrics do
not really correspond to significant differences in top words,
i.e., the words that a qualitative researcher would use to
define and understand a topic. To estimate this effect, we
need to study how similarity between top words relates to
the NLKS similarity measure.

Our studies have shown that in topics with similarity
0.93− 0.95 and higher, the 30-50 most probable words coin-
cide almost exactly, and the sequences in which they appear
in the list sorted by probability are also very similar; thus,
similarity levels of 0.93 and higher indicate that a qualita-
tive researcher would almost certainly treat these topics as
the same. Similarity level about 0.9 usually corresponds to
the situation when the first 30-50 words in the ranked list
do match, but they have different probabilities and go in a
different order; Table 1 shows a sample pair of such topics.
The similarity level of 0.85 usually corresponds to a situa-
tion when two topics have a completely different set of top
words.

Therefore, our experiments indicate that the proposed
NLKS metric does correspond well to a qualitative estima-
tion of topic similarity, and the similarity threshold for“truly
similar” topics appears to be around 0.9. In the next sec-
tion, we apply this metric to study the stability of Gibbs
sampling.

4. TOPIC STABILITY

4.1 Experimental setting
In topic modeling, the posterior distribution which is max-

imized during inference may have a very complex and cer-
tainly nonconvex shape. This leads to multiple local max-
ima; in practical terms, it means that different runs of the
same software may lead to different results, in particular, dif-
ferent word-topic distributions. Therefore, it becomes of pri-
mary importance to test the stability of topic reproduction.
We propose the following method to estimate the stability of
reconstructing topical solutions for given (unchanged) α and
β parameters and a fixed number of topics. We perform sev-
eral runs of the LDA inference software GibbsLDA++ [10]
with the same parameters, getting several word-topic and
topic-document distributions. Since these distributions re-
sult from the same dataset with the same vocabulary and
model parameters, any differences between them are entirely
due to the randomness in Gibbs sampling. This randomness
affects perplexity variations, word and document ratios, and
the reproducibility of the qualitative topical solution. Words
may change their probabilities in topics, and it makes sense
to use a KL-based measure to compare topical solutions. We
use the normalized measure NLKS introduced above.

In our experiments, we performed six runs with K = 120
topics with model parameters α = 0.5, β = 0.1 on our
dataset with 298,967 documents and a vocabulary of 153,536
unique words. Then we performed pairwise comparisons of
the results with the NLKS metric, computing how similar

20 40 60 80 10
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Figure 3: Topic similarity sorted in decreasing order;
lines correspond to different test run comparisons.
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Figure 4: Sample topic similarities across test runs.

the topics are across different runs, for each pair of models
getting a K ×K matrix whose elements represent the sim-
ilarity metric between topics. Then, for each topic of one
model (i.e., a row of the similarity matrix) we find the most
similar topic in the second model (i.e., a column).

4.2 Results
Fig. 3 shows topics sorted according to similarity in three

comparisons between different runs of LDA inference. It
shows that less than half of the topics are reproduced with
reliable stability (similarity > 0.9); this share would be even
smaller if we required more than two matches. Fig. 4 shows
several sample similarities between specific topics (showing
the top similarity value among topics from another test).
Some topics, (e.g., topics 25–28) fluctuate very little across
the runs, with NLKS similarity of 0.95-1.0, while others (e.g.,
1 and 97) have large deviation, with fluctuations around
40%; in practice this means that in some runs, these topics
are simply not found at all. On average, fluctuations amount
to 0.2065 per topic.

One might expect that the topics that do not reproduce
well are“trash”topics based on common words or that would
not be of interest for social studies anyway. Unfortunately,
this is not the case; for instance, an interesting and readily
interpretable topic on the war in Syria (first pair of topics
in Table 1) reproduced only three times out of six runs in
our experiments. Hence, a qualitative study might conclude
that war in Syria either is very interesting for Russian blog-
gers or goes completely unnoticed, depending on the random
number generator in Gibbs sampling.
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Similarity 0.935 Similarity 0.9 Similarity 0.854
USA 0.04734 USA 0.03567 tree 0.03195 tree 0.03321 USA 0.04734 water 0.01758

American 0.02406 American 0.01804 forest 0.021 forest 0.01918 American 0.02406 help 0.01296
Syria 0.02082 Syria 0.01758 garden 0.01527 green 0.01631 Syria 0.02082 city 0.01262

Obama 0.01374 country 0.01495 mushroom 0.015 mushroom 0.01563 Obama 0.01374 far 0.01199
weapon 0.01343 war 0.01361 leaf 0.01389 garden 0.01478 weapon 0.01343 house 0.01064

war 0.01309 military 0.01246 plant 0.01291 leaf 0.01453 war 0.01309 east 0.0104
president 0.01169 weapon 0.01084 grow 0.01146 plant 0.0135 president 0.01169 region 0.00945

UN 0.01018 Russia 0.01004 green 0.00873 grow 0.01277 UN 0.01018 dam 0.0091
military 0.01014 Obama 0.00996 collect 0.00779 color 0.01045 military 0.01014 flood 0.00904
country 0.01005 president 0.0096 rose 0.00764 flower 0.00809 country 0.01005 resident 0.00839

chemical 0.00944 UN 0.00869 flower 0.00744 rose 0.00809 chemical 0.00944 injured 0.00714
Syrian 0.00851 international 0.00769 color 0.00701 collect 0.00766 Syrian 0.00851 FRS 0.00698

Table 1: Three pairs of topics with NLKS measures. The first pair of topics did not reproduce in other runs.

5. CONCLUSION
In automated analysis of user-generated content on the

Web, topic modeling provides unparallelled possibilities for
sociological analysis by allowing the researcher to quickly
evaluate the topical map of a corpus of texts, draw conclu-
sions on what topics are discussed there and how intensively.
However, in this work we show that classical implementa-
tions of inference in LDA models should be applied with
care, since the algorithms contain inherent uncertainty in
regard to which local maximum they arrive to, and unlike
some other nonconvex optimization problems, in the case of
LDA this does in fact matter. We show that even topics
that can be easily interpreted qualitatively and appear to
be full of meaning for a sociologist may be in fact unstable,
showing up only in a fraction of LDA inference runs.

Therefore, to be able to draw specific sociological con-
clusions we recommend researchers to run topic modeling
multiple times (even with the same parameters), then dis-
tinguish stable topics that reappear across multiple runs and
analyze only those. We have proposed a new topic similarity
measure based on Kullback–Leibler divergence.

LDA has already been critiqued for lack of stability and
similar faults [11]. Our results show that further work is
required to solve the underlying problem, namely to improve
stability of topic modeling. One recently initiated direction
of studies that we believe to be promising in this regard deals
with regularized topic models. It appears that instead of
Bayesian regularization it may be better to use more general
Tikhonov regularizers; however, Tychonoff regularization in
application to topic modeling is a research direction still in
its infancy [13,14], and further work is required.
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